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A b s t r a c t  

On the  basis o f  e lementary  symmet ry  a rguments  it is shown tha t  (1) ff in classical 
mechanics  there  exists a quan t i ty  ~ + gpttvi + ~vv 2 tha t  is conserved, where ?v, #i, and v 
are particle parameters,  t hen  the/z  i .and v are all proport ional  to a single parameter  u and 
the  quan t i ty  Ata + ~.iBi#vi + C(X + 1D#v2), where D ---- v/ta. is conserved for all values of  
A ,  Bi, and C; (2) if in relativistic mechanics  there exists a quant i ty  X + £~tv i[1  - 
(v2/c2)] -1/2 + vc[ 1 - (v2/c2)] -112 tha t  is conserved, then  the / s  i and v are all proport ional  
to a single parameter  ~ and the  q u a n t i t y A k  + £iBitlvi[1 - (v2/c2) 1-1/2 + C#c[1 - 
(v2/c2)] -1/2 is conserved for all values of  A , B i ,  and C. 

1. I n t r o d u c t i o n  

In the preceding paper (this issue) it was shown that in a collision between 
two particles any conserved quantity, depending only on the nature and 
velocity of a particle, must classically be of the form 

g = X + ~ lair i + ~vv 2 (1.1) 
i 

and relativistically of the form 

g = 7t + E liivi[1 -- (v=lc2)]  -1/2 + uc[1 -- (v2 tc2)]  -1/2 (1.2) 
i 

where X, #i, and v are particle parameters 
The proof of this statement was based on the assumption that any quantity 

that is conserved must be conserved in all inertial frames, and on the assumption 
that when two identical particles moving along a line with the same speed but 
in opposite directions collide, then it is possible for the same particles to 
emerge moving with their original speeds and in opposite directions but along 
a different line, and that the directions of the line of approach and the line of 
recession may assume any value. 
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In this paper I will show that if one assumes that a quantity that is conserved 
in one inertial frame is conserved in all inertial frames, and for every collision 
a collision in which the velocities of the incident and outgoing particles are 
either reflected in a plane or rotated through the same amount is a possible 
collision, then one can prove the following results. 

Classical Collisions. If there exists a quantity 

g = X + ~ #iv i + ½uv 2 (1.3) 
i 

that is conserved in a collision, then we have the following: 
(a) There exists a particle parameter/1 and a set of universal constants 

B1, B~, B3, and D such that 

Ui = Bi# (1.4) 

(1.5) 
If at least one of the parameters/x i, u is not zero, then the ratio of the value 
of/x for one particle to the value of/x for a second particle is unique for the 
given pair of  particles. 

(b) The quantity 

G =Ap + E Bilxvi+ C(X +~Dlxv =) (1.6) 
i 

is a conserved quantity not only for the particular values of A, Bi,  C, and D 
for which G reduces to g, but for any other choice of the constants A, Bi, and 
C. 

Relativistic Collisions. If  there exists a quantity 

g = X +  ~ laivi[1--(v2/c=)] -1/2 +pC[1 - (v2/c2)] -1/z (1.7) 
i 

that is conserved in a collision, then we have the following: 
(a) There exists a particle parameter/~ and a set of universal constants B1, 

B~, B3, and C such that 

tt i =B/p (1.8) 

v = C# (1.9) 

If at least one of the parameters I~i, v is not zero, then the ratio of the value 
of/~ for one particle to the value of/~ for a second particle is unique for the 
given pair of particles. 

(b) The quantity 

a = A X  + X s iuvi[1 - (v=/c=)] - ' ' =  + C u e [ 1  - (v=/c=)] -1 '=  (1.10) 
i 

is a conserved quantity not only for the particular values of A, Bi, and C for 
which G reduces to g, but for any other choice of the constants A,  B i, and C 

In the following sections we will prove the above statements. 
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2. Some Useful Theorems 

In later sections we will find the following two theorems useful. Both 
theorems are consequences of the definition of a conserved quantity. 

Theorem 1. Ifg'(v) and g"(v) are conserved quantities, then any 
linear combination ofg'(v) and g"(v) is a conserved quantity, or 
equivalently 

g(v) = Ag'(v) + Bg"(v) 

where A and B are arbitrary constants, is a conserved quantity. 

(2.1) 

If we let 

Theorem 2. If there exists a conserved quantity of the form 

g(v) = ~ + 3h(v) (2.2) 

where a and/3 are particle parameters and h(v) is a universal function 
of the velocity other than a constant, and 3 is not identically zero, then 
the ratio of the value of 3 for one particle to the value of 3 for a second 
particle is unique for the given pair of particles. 

Proof. Consider a collision in which two particles a and b moving with 
velocities v(a) and v(b), respectively, collide and end up with velocities v*(a) 
and v*(b), respectively. If a +/3h(v) is a conserved quantity then 

a(a) + (3(a)h [v(a)] + a(b) + {3(b)h [v(b)l 

= a(a) ÷ 13(a)h [v*(a)] + a(b) + 3(b)h [v*(b)] (2.3) 

Ah(a) --- h [v*(a)] - h [v(a)] (2.4) 

Ah(b) - h [v*(b)] - h [v(b)] (2.5) 

then we can rewrite equation (2.3) as 

(3(a)Ah(a) + 13(b )zMa(b ) = 0 (2.6) 

Now suppose there exists a second constant of the motion a' + fh(v) .  Then 
by the same reasoning we expect 

3'(a)Ah(a) + t3'(b)&h(b) = 0 (2.7) 

Equations (2.6) and (2.7) constitute a set of simultaneous equations in the 
quantities aSh(a) and Ah(b), and will have a nontriviat solution if and only if 

3(a)/3'(a) = 3(b)/3'(b) (2.8) 

Proof. The proof of this theorem follows immediately from the definition 
of a conserved quantity. 
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Since the particles a and b are arbitrary we conclude that in general for any 
particle/3/p' is a universal constant. The theorem follows immediately. 

3. Basic Postulates 

The arguments in this paper will be based on the following postulates: 

Postulate 1. If a quantity is conserved in one inertial frame, then it is 
conserved in all inertial frames. 
Postulate 2. For every collision that occurs, a collision in which the 
velocities of  the incident and outgoing particles are reflected in a 
plane is a possible collision. 
Postulate 3. For every collision that  occurs, a collision in which the 
velocities of  the incident and outgoing particles are rotated the same 
arbitrary amount  is a possible collision. 

4. Classical Collisions 

If  we are given a conserved quantity g(v) then we can generate other 
conserved quantities by making use of  theorems 1 and 2 and the following 
theorems which can be derived from postulates 1 ,2 ,  and 3: 

Theorem 3. I fg(v)  is a conserved quantity then g ( - v )  is a conserved 
quantity. 
Theorem 4. tfg(vi,  v], vk) is a conserved quantity where i ¢ ]  v ~ k 4= i 
then g(v], vk, vi) is a conserved quantity. 
Theorem 5. Ifg(vi, v], vk) is a conserved quantity where i ¢ ]  ¢ k 4: i 
then g ( - v  i, v i, vk) is a conserved quantity. 
Theorem 6. I fg(v)  is a conserved quantity then g(v + V) is a con- 
served quantity for arbitrary constant V. 

Using Theorems 1-6 we can show that  if there exists a conserved quantity 

g = X + 7. t~ivi + ~vv 2 
i 

then the following quantities are also conserved quantities: 

gl  = ~ [g(v) + g ( - v ) ]  = x + - ~ v :  

= i  g2 ~ [g(v) - g ( - v ) ]  = ~. ~ivi  
I 

g3 = ½ [g2(vi, Vj, Vtc ) -- g2(--Vi ,  Vj, V/c)] = lair i 

g4 = g3(v j ,  Vk, Vi) = l~iVi 

gs = V, :1 [ g d v  + v ) -  gffv)] = m  

g6 = g t ( v + V ) - g l ( v ) = P  E viVi+½vV 2 
i 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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g7 = V - 2  [g6(v)  + g6( - -V) ]  = t~ ( 4 . 8 )  

g ,  = ½ [g6(v) - g 6 ( - v ) ]  = v ~ viV i (4,9) 
i 

g9 = (1 /2Vi )[gs(v i ,  vi, vk) - g s ( - v i ,  v], Vle)] = uv i ( 4 . 1 0 )  

Since/~1 vi, la2Vi, fx3vi, and vv i are conserved quantities, then by virtue of  
Theorem 2 there exists a set of  constants B1, Bz, B3, and D and a particle 
parameter ~ such that 

~i = Bil.Z (4.11) 

v = D u  (4.12) 

Finally, f rom Theorem 1 any linear combination of the above quantities is 
a conserved quantity, and hence 

a =AI~ + Y. Biuvi + C[X + ~Duv 2 ] (4.13) 
i 

is a conserved quantity for any choice of  the constants A,  Bi, and C. 

5. Relativistic Collisions 

The same program that we followed for classical collisions can be followed 
for relativistic collisions. The mathematics can be simplified if instead of 
dealing with the velocities v and V we define the following quantities: 

u =-'r~" (5 .1)  

7 ~- [1 - (v2/c2)1 -l/z=-- [1 + (u2/c2)] 1/2 (5.2) 

u -  p v  (5.3) 

r ~ [1 - (V2/c2)1-5/2 -_- [1 + (U2/c2)] ,/2 (5.4) 

If  we are given a conserved quantity g(u) then we can generate other conserved 
quantities by making use of  Theorems 1 and 2 and the following theorems which 
can be derived from postulates 1, 2, and 3: 

Theorem 3'. I fg (u )  is a conserved quantity then g ( - u )  is a conserved 
quantity. 
Theorem 4'. Ifg(u i, u/, uk) is a conserved quantity where i =/=f 4= k 4= i 
then g(uj, uk, ui) is a conserved quantity. 
Theorem 5'. Ifg(ui, uj, uk) is a conserved quantity where i 4:/" 4= k 4= i 
then g(--Ui, tt], Uie) iS a conserved quantity. 
Theorem 6'. I f  g(u) is a conserved quantity then g{u + 7U + 
[(P - 1) (U .  u)U/U 2] } is a conserved quantity. 

Using Theorems 1,2 ,  3 ' -6 ' ,  we can show that if there exists a conserved 
quantity 

g = X + ~ Idibti + p(e 2 +//2)1/2 ( 5 . 5 )  
i 
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then the following quantities are also conserved: 

gl = ½ [g(u) + g ( - u ) ]  = X + v(c 2 + u2) i n  (5.6) 

g2 = ½ [g(u) - g ( - u ) ]  = ~ plug (5.7) 
i 

g3 = 1 [g2(ui ' U], uk)  - -g2 ( - -u i ,  u], Uk) ] = PiUi (5.8) 

g4 = g3(uj ,  Uk, Ui) = g iu /  (5.9) 

gs = g3 {u + 7U + [ ( r  - 1) ( u .  u)U/U z ] } - g3(u) 

= giTgi  + gi [ ( r  - 1) ( w .  u)Vi /V  z ] (5.1 o) 

g6 = (c/2Vi) [gs (u) + g s ( -U) ]  = gic7 = Pi(c 2 + u2) 1/2 (5.1 1) 

g7 = g l  (u + 7U + [ ( r  - 1) (U-u )U/U2] )  - g l ( u )  

= v(I '  - I)  (c 2 + u 2) i n  + v(U" u/c) (5.12) 

gs = [ I / 2 ( r  - 1)1 [gT(u) + g T ( - u ) ]  = v(c 2 + u2) 1/2 (5.13) 

g9 =½c[g7(u) - g T ( - u ) ]  = v U - u  = v Z Uiui (5.14) 
i 

glo = (1 /2Ui)[gg(ui ,  u], Uk) -- gg(--Ui, u/, uk)] = vui (5.15) 

gH =gl - g s  = X (5.16) 

Since ga ui, p2ui, g3ui, and uu i are conserved quantities, then by virtue of 
Theorem 2 there exists a set of constants B1, B2, B3, and C and a particle 
parameter g such that  

Pi =Big (5.17) 

v = Cg (5.18) 

The same result follows from the fact that pi(c 2 + u2) 1/2 and v(c 2 + u2) i n  
are conserved quantities. 

Finally, f rom Theorem 1 any linear combination of the above quantities 
is a conserved quantity,  and hence 

G =AX + ~ Bigu  i + Cg(c 2 + U2) 1/2 ( 5 . 19 )  
i 

is a conserved quantity for any choice of  the constants A ,  Bi, and C. 

6. Conclusion 

In this paper and the preceding paper we have shown that the possible 
strictly velocity.dependent conserved quantities are extremely limited. 

The results obtained have interesting implications for the logical structure 
of  classical and relativistic mechanics. One can show, for example, that 
classical dynamics can be built on the assumption that  there exists a quantity 
gv i that  is conserved, and relativistic dynamics can be built on the assumption 
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that there exists a quantity ~u  i that is conserved. In relativistic dynamics if 
any velocity-dependent quantity is conserved then l~ui is conserved, mad if t~u i 

is conserved then all possible velocity-dependent quantities that could be 
conserved are conserved, where we are excluding conserved quantities of the 
form g = X. This suggests that the basic postulate of relativistic dynamics might 
be stated simply as: "Any quantity which can be conserved is conserved." 
A similar formulation could be devised for classical dynamics. 


